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Abstract

A generalized mathematical treatment is postulated to investigate the condensation heat transfer performance of horizontal tubes with
varying geometries, with the presence of non-condensable gases in the free stream. The governing equations of mass, momentum and
energy conservation in the liquid phase are solved semi-analytically, with matching constraints being imposed at the liquid–vapour inter-
face, while the governing equations of energy and species conservation in the vapour phase are solved numerically. An air–water vapour
system is considered for demonstrating the mathematical model. Special cases of the model are illustrated with the aid of elliptical and
equiangular spiral geometries. It is revealed that the geometrical features of typical polar surfaces can turn out to be favourable in arrest-
ing probable drastic reductions in the condensation heat transfer rates that could be otherwise associated with the presence of non-con-
densable gases in the free stream. The favourable effects induced by polar surfaces become relatively more prominent, as percentage of
non-condensable gases in the free stream increases. A geometrical shape function is also ascertained in this regard, which quantifies the
extent of this augmentation in the heat transfer performance. In general, it is suggested that polar surfaces with higher values of the shape
function over a majority of the azimuthal regime can turn out to be more desired choices for achieving enhanced rates of condensation
heat transfer, provided that there are no serious manufacturability constraints.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Film condensation of vapours has been extensively stud-
ied by the research community during the last century [1–
12], primarily motivated by its relevance in the design of
heat exchangers in the chemical processing units and power
industries. Starting from the fundamental study of Nusselt
[1], several other authors [2–25] have reported significant
contributions towards the understanding of heat and mass
transfer mechanisms associated with film condensation on
external surfaces. With a further motivation of designing
compact and yet more effective heat exchangers, a signifi-
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cant effort has subsequently been devoted to enhance the
film-wise condensation rates on horizontal condensing
tubes. The earlier efforts in this regard have been directed
towards the employment of passive heat enhancement tech-
niques, such as the introduction of extended surfaces, as
potential enhancers of the surface area to volume ratio,
in conjunction with the utilization of the surface tension
effects to obtain thinner condensate films. Alternatively,
researchers have also proposed non-circular geometries
[3–12], which might offer with a natural provision of thin-
ning the condensate film deposition, by directly exploiting
the effects of surface tension, as manifested through the
establishment of strong pressure gradients in the stream
wise direction (i.e., along the surface profile), and a simul-
taneous aiding effect of gravity as a consequence of place-
ment of a larger proportion of the condensing surface in
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Nomenclature

a geometric surface parameter
b semi-minor axis of the ellipse
C concentration
Cp specific heat of condensate at mean film temper-

ature
De equivalent diameter of a circular tube with the

same condensing surface area

e eccentricity of the ellipse,
ffiffiffiffiffiffiffiffiffi
a2�b2
p

a
F(h) polar function describing the velocity profile
g acceleration due to gravity
h local heat transfer coefficient
�h average heat transfer coefficient
hfg latent heat due to condensation

Ja Jacob number,
Cp T sat;i�T wð Þ

hfgjT¼T sat;i

K thermal conductivity of the species
L length of semi perimeter of any polar curve
M molar mass
_m mass flow rate of cooling liquid flowing through

the tube
_mc mass flux of condensate
Nr non-dimensional surface tension force, 4r

ql�qvð ÞgD2
e

Nu local Nusselt number, hDe

K l

Nu average Nusselt number
pr pressure due to surface tension
R polar radius of a point on the condenser profile
Rc radius of curvature
Ra Rayleigh number,

qlðql�qvÞgD3
e Cp

llK l

r radial coordinate of any point in the flow do-
main

T temperature

Tc critical temperature of water
v velocity

Greek symbols

b angle between the tangent to the polar surface
and the direction of action of gravity, at any
point on tube surface

d liquid film thickness
h polar angle of any point, as measured from the

vertical
l dynamic viscosity
q density
r surface tension coefficient
/ parametric angle of any point on the tube sur-

face

Subscripts

a reference condition
c circular
g gas, non-condensible
i interface
l liquid phase
p polar
r radial direction
sat saturation
v vapour phase
w wall
x1 stream-wise direction along the tube surface
y1 cross stream-wise direction at any point to the

tube surface
1 free stream
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line with the vertical. In particular, elliptic tubes with differ-
ent eccentricities [4–11] have been extensively investigated
with an intention of obtaining augmented rates of the over-
all heat transfer. The first comprehensive analysis on lam-
inar film condensation of saturated vapour on inclined
elliptical tubes considering surface tension effects has been
carried out and reported by Fieg [6]. Dutta et al. [12], in a
more recent study, have explored the advantages associated
with the employment of condensing tube surfaces in the
form of equiangular spirals, in order to achieve enhanced
rates of heat transfer.

Although, most of the above-mentioned investigations
have been concerned with the condensation of pure satu-
rated vapours, a small amount of non-condensable gas is
expected to be invariably present in any practical condens-
ing system, as a consequence of leakages prevailing in the
same, or due to a dissolution of the condensing vapour.
In this regard, it has been well established that the existence
of non-condensable gases in the system can greatly reduce
the condensation heat transfer rates and significantly dete-
riorate the performance of the condensers, primarily by the
virtue of the fact that non-condensable gas boundary layer
formed at the liquid–vapour interface serves as an addi-
tional resistance against the vapour condensation to take
place. Minkowycz and Sparrow [15] executed a pioneering
investigation to analyse the effects of interfacial resistance,
superheat in the vapour, thermo-solutal buoyancy driven
convection and the property variations on the condensa-
tion heat transfer in presence of non-condensable vapours.
Subsequent investigations on this topic have been executed
by several other authors in the past few decades [17–25]. Of
particular interest has been the condensation heat transfer
on external surfaces, in presence of non-condensables in
the free stream, mainly because of its technological rele-
vance. Although, a number of research publications on this
central theme exist in the literature, a generalized mathe-
matical treatment for analyzing film condensation over sur-
faces with disparate geometrical attributes is yet to be
reported. In practice, however, such kinds of generalization
could be immensely critical in providing a common basis
for comparing the heat transfer performance of condensing
tube surfaces of varying geometries, in presence of non-
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condensable gases, in an effort to arrive at an optimized
design of the heat exchanging surface contour.

Aim of the present work is to establish a generalized
mathematical formalism for analyzing external condensa-
tion heat transfer over surfaces with varying geometrical
shapes, in the presence of non-condensables in the free
stream. This is systematically achieved by obtaining the
evolution of the condensing film thickness as a function
of the generalized polar angle, from a coupled solution of
mass, momentum and energy conservation equations, with
matching interfacial constraints. In order to obtain a gen-
eralization in the condensation behaviour in the presence
of non-condensables, separate treatments of the liquid
and the vapour phases have been introduced. Based on
the generalized theoretical proposition developed in this
study, a direct comparison of the tube geometries of vari-
ous polar forms can be possible, so as to quantitatively
asses the capabilities of their geometrical features to arrest
an otherwise drastic reduction in the heat transfer rates due
to the influence of non-condensable gases. As an illustra-
tion, tube surfaces of circular, elliptic and equiangular
polar shapes are compared, in an effort to pinpoint their
relative performance in achieving a desired rate of heat
transfer, despite the adverse effects imposed by the presence
of non-condensable gases in the free stream.
2. Mathematical modeling

Fig. 1 is the schematic representation of a generic con-
densing surface, with ‘x1’ as the generalized stream-wise
coordinate and ‘y1’ as the corresponding cross-stream wise
coordinate. In terms of polar coordinates, the surface is
described as R(h), where h is the angle between the vertical
and the radial direction at any point on the condensing sur-
face contour. As the condensing vapour comes in contact
with the external surface of the condenser, a thin conden-
sate film can readily form adhering to the same, separating
the tube surface from the bulk vapour stream. The mathe-
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Fig. 1. A schematic diagram depicting the geometrical parameters
associated with a condensing surface of an arbitrary geometry.
matical model depicting the thermo-solutal transport in the
condensate and the free stream can be formulated by
appealing to the pertinent conservation equations of mass,
momentum and thermal energy. In-built with the mathe-
matical model presented here are certain major simplifying
assumptions, as follows:

1. The condensed liquid film adhering to the tube surface is
thin enough, so that temperature distribution within the
same can assumed to be linear.

2. The flow Reynolds number in the condensate film is
small enough so that the convective terms in the linear
momentum conservation equation for the liquid phase
can be neglected.

3. Fluid flow is incompressible and laminar.
4. Local thermodynamic equilibrium prevails at the liquid

vapour interface.
5. The condensing tube surface is isothermal (T ¼ T w).
6. Vapour phase is otherwise stagnant except having only

radial flow velocity due to mass diffusion.
7. Film surface and wall surface have the same radius of

curvature Rc(h) at all angular locations.
8. Viscosity of the condensate is taken to be temperature-

independent.

One may begin with the analysis by first noting that the
governing equation for linear momentum conservation in
the liquid phase can be written as

ll
d2vx1

dy2
1

¼ �ðq� qvÞg cos bþ dpr

dx1

ð1Þ

where b denotes the angle between gravity and tangent to
any point on the surface (refer to Fig. 1) and dpr

dx1
denotes

the pressure gradient due to surface tension. The pr term
can be accounted for by a balance of surface tension and
pressure forces at the interface as

pr ¼
r
Rc

ð2Þ

where r is the surface tension coefficient and Rc is the local
radius of curvature, which, in general, can be defined as

Rc ¼
ðR2 þ R02Þ

3
2

ðR2 þ 2R02 � RR00Þ
ð3Þ

where ‘0’ denotes differentiation with respect to h. Based on
Eq. (3), one may obtain an expression for dpr

dx1
for a general-

ized polar surface, as

dpr

dx1

¼ � r

R2
c

� �
dRc

dh

� �
dh
dx1

� �
ð4Þ

where,

dx1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dR2 þ ðRdhÞ2

q
ð4aÞ

Eq. (1) can be analytically solved with the aid of the follow-
ing boundary conditions: vx1

¼ 0 at y1 ¼ 0 and
dvx1

dy1
¼
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0 at y1 ¼ d, where d is the condensate film thickness. This
leads to the following velocity profile in the liquid film

vx1
¼ ðq� qvÞg

ll
y1 d� y1

2

� �
F ðhÞ ð5Þ

where,

F ðhÞ ¼ dpr=dx1

ðql � qvÞg
þ cos b

� �
ð5aÞ

It is important to note here that the function F(h) repre-
sents the sole influence of the geometrical characteristics
of the surface on the liquid phase velocity profile. An
important aim of the subsequent analysis, therefore, would
be to investigate the influence of this function on the con-
densation heat transfer performance of various tube
geometries.

Analysis for the flow-field in the vapour phase can be
carried out by first referring to the continuity equation in
the following form:

1

r
o

or
ðrvrÞ þ

1

r
o

oh
ðvhÞ ¼ 0 ð6Þ

Since the characteristic cross-radial component of velocity
is much smaller than the characteristic radial component of
velocity (which is the Stefan flow velocity) and the charac-
teristic length scale along the tube surface profile is larger
than that along the radial direction, it can be inferred that
the first term in the left hand side of Eq. (6) dominates over
the second term in an order of magnitude sense. Hence, it
can be inferred that

vr /
1

r
ð6aÞ

Now, assuming vr ¼ vsðhÞ at r ¼ Rþ d (liquid–vapour
interface) and d� R, Eq. (6a) leads to the following
expression for vr in terms of vs (hÞ

vr ¼
vsðhÞR

r
: ð7Þ

In Eq. (7), vs (h) is the radial velocity at the liquid–vapour
interface, which can be determined from the conditions of
impermeability of the interface to the non-condensing spe-
cies. Using Eq. (7), the energy and species conservation
equations in the vapour phase can be expressed in the fol-
lowing simplified forms:

vsðhÞR
r

� �
oT v

or
¼ av

o2T v

or2

� �
þ 1

r
oT v

or

� �
þ 1

r2

o2T v

oh2

� �� �
ð8Þ

vsðhÞR
r

� �
oCv

or
¼ D

o
2Cv

or2

� �
þ 1

r
oCv

or

� �
þ 1

r2

o
2Cv

oh2

� �� �
ð9Þ

where the subscript ‘v’ refers to vapour phase, T is the tem-
perature, C is the concentration of the condensable phase,
a is the thermal diffusivity and D is the mass diffusion coef-
ficient. The boundary conditions consistent with Eqs. (8)
and (9) are as follows:

At r ¼ RT v ¼ T i; Cv ¼ Ci; ð10aÞ
where the subscript ‘i’ refers to the conditions at liquid–
vapour interface.

At r!1ðtaken to be 10 R for the numerical computationsÞ;
T v¼ T1; Cv¼C1; ð10bÞ

where T1 is the saturation temperature corresponding to a
mass fraction of C1 of the condensable in the vapour
phase.

At h ¼ tan�1 m and h ¼ p;
oT v

oh
¼ 0;

oCv

oh
¼ 0 ð10cÞ

It is noteworthy to mention here that the interfacial vapour
temperature and concentration values are thermodynami-
cally inter-linked from local equilibrium considerations,
as per which the interfacial temperature is nothing but
the saturation temperature of the vapour at its partial pres-
sure at the interface, which in turn depends on the concen-
tration of the vapour at the interface. In the present
investigation, water is assumed to be the condensing phase
and air is taken to be the non-condensable gaseous phase.
For such air–water vapour systems, the partial pressure of
the vapour at the interface can be expressed as a unique
function of interfacial saturation temperature as follows
[23]:

pv

ptotal

¼ exp
hfg;a

R
T i � T a

T iT a

� �
� 0:38

T c

ln
T i

T a

� 0:118

T 2
c

T i � T agf
	 


ð11Þ
where hfg;a is the latent heat of condensation of steam at a
reference temperature Ta, Tc is the critical temperature of
water and ptotal is the total pressure of the mixture. The
interfacial mass fraction of the vapour can be expressed as

Ci ¼
1

1þ Mair

Mwater

ptotal

pv
� 1

� � ð12Þ

where M denotes the molar mass of the corresponding spe-
cies. The radial velocity at the liquid–vapour interface, as
appearing in Eqs. (8) and (9), can be expressed as

vs ¼ �D

oCv

oy1

� �
y1¼d

ð1� CvÞi
ð13Þ

A physical basis of Eq. (13) can be provided as follows. The
non-condensable gas is transported from the bulk vapour
phase to the interface by the same advective flow that also
carries the condensable phase. However, impermeability
constraints of the non-condensable gas at the interface drive
off the non-condensable phases from the interface to the
bulk by means of diffusive transport, at the same rate at
which it is transported into the interface. This, in turn,
physically implies that an adequately high value of the
non-condensable concentration is expected to build up at
the liquid–vapour interface, so as to counterweigh an
incoming convective transport with a strong gradient-
driven back-diffusional transport of the non-condensable
species.
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It is also important to mention here that the liquid and
the vapour phase temperature distributions are implicitly
interlinked with the Stefan balance condition at their inter-
face, which necessitates

_mchfg ¼ K l oT l=oy1ð Þy1¼d � Kv oT v=oy1ð Þy1¼d ð14Þ

where _mc is the rate of condensation mass transfer and K is
the thermal conductivity. Because of the assumption of a
linear temperature profile in the liquid phase, the term

ðoT l=oy1Þy1¼d in Eq. (14) reduces to ðT i�T wÞ
d

� �
. Further, _mc

can be calculated explicitly from the liquid phase velocity
profile, by noting that the difference in the mass flow rates
across the two opposite faces of an infinitesimally small
liquid control volume (coaxial with the x1 direction) is
accounted for by the condensation of the overlying vapour
phase to form the condensate phase. This can be mathe-
matically described as

_mc ¼
d

dx1

Z d

0

qlvx1
dy1

� �
ð15Þ

Combining Eqs. (14) and (15) with the velocity profile
given by Eq. (5), the following ordinary differential
equation can be obtained:

dðd3F ðhÞÞ
dx1

¼ 3llK lðT i � T wÞ
hfgqlðql � qvÞg

� �
1

d

� 3llKv

hfgql ql � qvð Þg

� �
oT v

oy1

� �
y1¼d

; ð16Þ

which can be further simplified to the following form

dðvÞ
dh
¼ 3llK lðT i � T wÞ

hfgqlðql � qvÞg

� �
F ðhÞ1=3

v1=3

 

� 3llKv

hfgqlðql � qvÞg

� �
oT v

oy1

� �
y1¼d

!
dx1

dh

� �
ð16aÞ

where v ¼ d3F ðhÞ and F(h) is given by Eq. (5a).
In practice, a solution to Eq. (16a) is obtained as fol-

lows. First, a coupled numerical solution of the vapour
phase temperature and concentration profiles is obtained
by employing a control volume based finite difference
method. The resultant solution of the vapour phase tem-
perature field is substituted in Eq. (16a), which is then
solved by employing a fourth order Runge–Kutta method,
to obtain the thickness of the condensate phase as a func-
tion of the polar angle. Based on this information, the
overall convective heat transfer coefficient, h, is calculated
as follows

h ¼ K lðT i � T wÞ
dðT1 � T wÞ

ð17Þ

The Nusselt number, Nu, is defined as

Nu ¼ hDe

K l

¼ DeðT i � T wÞ
dðT1 � T wÞ

ð18Þ
where De is the diameter of an equivalent circular cylinder
that has the same external surface area as that of the given
surface under consideration. The concept of such an equiv-
alent diameter [6] has been introduced in the analysis to of-
fer ready comparison bases for condensation performance
of tubes with varying surface contours, with all other con-
ditions remaining unaltered. The area-averaged Nusselt
number can be calculated as

Nu ¼
R

NuR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d

dh ðln RÞ
� �2

q
dhR

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d

dh ðln RÞ
� �2

q
dh

; ð19Þ

which is nothing but a non-dimensionalized representation
of the average heat transfer coefficient over the condenser
tube surface, R being the local polar radius of the profile
corresponding to an angle h. The mathematical descrip-
tions presented through Eqs. (1)–(19) are fairly general
and are independent of any specific choice of the condens-
ing surface profile. However, it can readily be observed that
the function F(h) appears as a distinctive influencing
parameter that varies from one surface profile to another
and effectively inculcates the details of the geometric fea-
tures of tube surface that are responsible for draining the
condensate film, attributed to a combined effect of the sur-
face-tension driven pressure gradient and the gravity force
component acting in the streamwise direction. Because of
this critical significance, we term F(h) as the condensing
surface shape function, since it alone dictates the influence
of the shape of the condensing surface on the overall con-
densation performance. Table 1 illustrates the exact math-
ematical forms of this function, along with other auxiliary
geometry-dependent parameters, corresponding to various
surface forms, as obtained from the present generalized
formulation. It can easily be observed from the table that
a wide variety of shapes, ranging from circular, elliptic to
equiangular spiral profiles, can all be analyzed by the uni-
fied sets of model expressions developed in this study. The
different tube profiles considered in the present study are as
follows:

(i) An equiangular spiral (Fig. 2a): in this geometry, the
entire symmetrical half of the polar curve cannot be
taken to model the tube surface, since there exists
an upward sloping portion, bounded by,
06 h 6 tan�1 m in which the condensate cannot flow
with the aid of gravity. This leads to the consider-
ation of a surface formed by the segment of the polar
profile R ¼ aemh, described on a vertical chord BE, as
shown in the figure. The segment BGE represents the
half of the tube surface, with chord BE as the axis of
symmetry. It can be noted here that for this geome-

try, the term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d

dh ðln RÞ
� �2

q
becomes a constant

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2
p

), so that one may also evaluate the area-

averaged Nusselt number by employing the following

simplified expression: Nu ¼
R

NuRdhR
Rdh

. This kind of sim-



Table 1
A summary of the geometry-dependant attributes for various surface forms, pertinent to their condensation performance

Circle Ellipse Equiangular spiral

R a a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

1� ðe sinðhÞÞ2

s
aemh

Rc a
a2

b
1þ e4 cos2 h� 2e2 cos2 h

ð1� ðe cos hÞ2Þ

 !3=2

aemh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ m2Þ

p

dx1

dh

� �
a a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p 1þ e4 cos2 h� 2e2 cos2 h

1� e cos hð Þ2
� �3

0
B@

1
CA

1=2

aemh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ m2Þ

p

dpr

dx1
0

3b
2a2

re2 sin 2/

1� e2 cos2 /ð Þ5=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðe cos h2Þ

q
a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2e2 cos2 hþ e4 cos2 h
p rme�2mh

a2ð1þ m2Þ

b p=2� h
p
2
� tan�1 tan h

1� e2

� �
p
2
� tan�1 m� h

F(h) sin h

3b
2a2

1

ðql � qvÞg
re2 sin 2/

ð1� e2 cos2 /Þ5=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðe cos h2Þ

q
a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2e2 cos2 hþ e4 cos2 h
p

þ cos
p
2
� tan�1 tan h

1� e2

� �� �
rme�2mh

ðql � qvÞga2ð1þ m2Þ

� cos
p
2
þ tan�1 mþ h

� �

De 2a De ¼ 2a
p

R p
0 gð/Þd/ where,

gð/Þ ¼
1� e2
 �

þ e4

4
sin2 2/

1� e2

4 sin2 2/

0
BB@

1
CCA

2að1þ m2Þ
1
2

pm
� e


p
2þ/
�

m � em tan�1 m

� �
where the angle / is obtained from

cos / ¼ aem tan�1 m sinðtan�1 mÞ
aemðp=2þ/Þ

Fig. 2a. An equiangular spiral curve generated on the vertical axis.
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Fig. 2b. A horizontal ellipse with major axis aligned along gravity.
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plification, however, is not possible in general for all
other tube profiles (for example, for the case of an
elliptically shaped tube profile), except for pure circu-
lar ones.

(ii) An ellipse (Fig. 2b): a horizontal elliptic tube with the
major axis aligned with the direction of gravity.

(iii) A purely circular one (for the purpose of comparison).

These surfaces have been specifically chosen, because of
the fact that several researchers have extensively studied
the condensation heat transfer characteristics over tubes
with such geometrical contours, in the recent past [2–12,23].

For the purpose of illustration, the variations of the
function cos b with h, for equiangular spiral and elliptic
shapes are depicted in Figs. 3 and 4, respectively. It can
be observed that for an equiangular spiral, higher values
of the geometrical parameter m result in a consequent



Fig. 4. Variations in the surface function, cos b, for an elliptic geometry
with the variations in the polar angle, for different values of the
eccentricity.

Fig. 3. Variations in the surface function cos b for an equiangular spiral
geometry with variations in the polar angle, for different values of the
polar constant.
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phase lead in the cos b vs. h characteristics. The function
F(h), in this case, is the sum of two independent contribu-
tions, namely, an explicit geometry-dependent component
(� cos p

2
þ tan�1 mþ h

 �
) and another component that

depends on the relative influence of geometrical contribu-
tions to the net surface tension and gravity effects

rme�2mh

ðql�qvÞga2ð1þm2Þ

� �
. The contribution of the later component

towards the overall variations in F(h) turns out to be rather
inconsequential, which in turn implies that the gravity
dependent component overweighs the surface tension
dependent component to a significant extent. Fig. 4 depicts
a very similar variation for the elliptical shapes. In general,
it is observed that higher the eccentricity (e) of the ellipse,
wider is the h-domain over which a substantially high value
of cos b is maintained. Analogous to the observation made
in case of the equiangular spiral, the role of surface tension
driven component is ascertained to be negligible in this case
as well, as compared to the effects of gravity.
3. Results and discussion

One of the primary motivations behind this investigation
is to obtain an effective comparison between the
condensation performances of varying geometries, by uti-
lizing a generalized mathematical framework. The physical
parameters for which these cases are investigated can be
translated in terms of two dimensionless groups [12],
namely, Ra

Ja

 �1
4 and N r, where Ra is the Rayleigh number,

Ja is the Jacob number and Nr is a ratio depicting the rel-
ative importance of surface tension and the gravity effects
for a specified equivalent diameter. Typical values of these
parameters, as employed in the present study, are taken
from Dutta et al. [12]. Values of the thermodynamic param-
eters are taken from Som and Chakraborty [23]. Under
specified values of these physical parameters, selection of
the geometrical characteristics pertinent to various surface
profiles is critical to the performance of the condenser.
However, the geometrical characteristics are also, in prac-
tice, restrained within the practical considerations of manu-
facturability of the desired shape. For example, a practical
guideline of the ranges of eccentricity values for elliptically
shaped condensing tubes, based on manufacturing con-
straints, has been reported to be 0 6 e 6 0.9 (approxi-
mately) [9]. Analogous restraints have also been identified
for equiangular spiral shapes, with 1 6 m6 2 [14]. Within
these constraints, higher values of the parameters m (for
equiangular spiral) and e (for ellipse) essentially imply
higher values of the function F(h) prevailing over a majority
of the azimuthal range, leading to lower values of d, and
consequent enhancements in the rates of condensation heat
transfer. Therefore, for an inter-comparison between these
two shapes, upper limits of these parameters are chosen as
m (polar constant for an equiangular spiral)=2 and e

(eccentricity for an ellipse) 0.9 in this study.
Fig. 5 shows a variation of the non-dimensional liquid

film thickness, d� ¼ d DeK lll T1�T wð Þ
hfgðql�qvÞqlg

� ��1=4

, over the tube sur-

face of different geometries, for various values of free
stream concentration of non-condensable gases. The figure
depicts a gradual increase in film thickness, as one moves
progressively along the streamwise direction, x1. It is
observed that the film thickness at any polar angle is higher
with lower free stream concentrations of the non-condens-
able gas, for all the polar surfaces. An elucidation to this
observation may be made from the dependence of film
thickness on the temperature difference, (Ti � Tw), as
depicted in the Nusselt’s classical theory on film condensa-
tion over a vertical flat plate in presence of non-condens-
able species [14]. The interfacial temperature, Ti, equals
to the saturation temperature corresponding to partial
pressure of vapour at the interface. The vapour pressure
at interface, again, depends on the local concentration of
non-condensable species which is being controlled by its



Fig. 5. Non-dimensional film thickness as a function of the non-dimensional streamwise coordinate, for different values of free stream concentrations of
the non-condensables. Condensing surfaces with equiangular spiral (m = 2) and elliptical shapes (e = 0.9) are considered to generate these plots.

Fig. 6. Variation in the local Nusselt number along the tube periphery, for condensing surfaces with equiangular spiral and elliptical shapes.
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diffusive flow from the interface to the bulk. Hence, a
decrease in the free stream concentration of the non-con-
densable gas results in a lower concentration build up of
the same at the interface, thereby increasing the value of
(Ti � Tw), consequently leading to an increase in the con-
densate film thickness.

The comparison between non-dimensional film thick-
nesses for various surface geometries is the highlight of
Fig. 5. It is observed that the film thickness for an equian-
gular spiral is lower than that for an ellipse with the same
condensing surface area. This can be explained on the basis
of some observations from the plots of cos b vs. h (Figs. 3
and 4). The function F(h) implies the components of the
surface tension driven pressure gradient and gravity in
the direction of condensate flow. It can be noticed that
for m = 2, the values attained by F(h) are initially quite
high, as compared to those obtained in case of an ellipse
of eccentricity e = 0.9, thereby driving the condensate
much faster, resulting in a decrease in the film thickness.
A mathematical approach to explain this phenomenon
can be obtained by a cognitive consideration of the fact
that the growth of film thickness is directly proportional
to the term dx1

dh

 �
, the order of which is equivalent to that

of the geometric parameter ‘a’ (Table 1). It can be easily
established from geometric considerations that for a speci-
fied value of ‘a’, the surface area for a spiral with the polar
constant, m = 2, is higher than that for an ellipse with
eccentricity, e = 0.9. Hence, for an identical surface area,
an equiangular spiral will have a lower value of ‘a’, and
thereby, a lower value of the film thickness, too.
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Fig. 6 depicts the variation of local Nusselt number along
the length of the tube periphery for surfaces with different
geometries at a given value of free stream concentration
of the non-condensable species, Cg;1 ¼ 0:1%. The decrease
in local Nusselt number along the surface is attributed to
the increase in liquid film thickness due to condensation.
A comparison between the heat transfer performances of
the tube with elliptic profile and that for an equiangular
spiral reveals that the tube with spiral geometry facilitates
greater heat transfer than that done by the ellipse. This
may be attributed to the fact that the liquid film thickness
for spiral geometry is lower than that for an elliptic tube,
as established in Fig. 5. It is noteworthy to mention that
the heat transfer performance for elliptic tubes increases
marginally with an increase in ellipticity of the tube from
0 to 0.45, while there is a sudden increase in heat transfer
rate with an increase in eccentricity from 0.45 to 0.9. This
is in accordance with the results reported by Mosaad [9]
for film condensation in absence of non-condensable spe-
cies. This observation can be sensed from the plots of F(h)
vs. h (Fig. 4) for an ellipse, where a sudden rise in F(h) takes
place with an increase in eccentricity from 0.6 to 0.9.

The most important feature of the present work is to
evaluate the role of non-circular surface geometry as com-
pared to a simple circular one in heat transfer augmenta-
tion capability to combat a drastic reduction in
condensation heat transfer rate due to the presence of
non-condensable species at free stream. Fig. 7 depicts this

picture through a plot of
Nup

Nuc
, as a function of the free

stream concentration of the non-condensable species,
Cg;1, for spiral and elliptic geometries of the tube surface.
Fig. 7. Ratio of the averaged Nusselt number for the polar surfaces to that
fraction of the non-condensable gases. The concentration values in the figure
The subscripts ‘p’ and ‘c’ for Nusselt number, Nu, refer to
non-circular and circular surface geometries, respectively.
It is observed that the enhancement in heat transfer rate,
with respect to a circular tube, is more for a spiral geometry
than for an elliptic geometry. It is found that the enhance-
ment for an ellipse of eccentricity, e = 0.45 is quite low,
while it is substantially high for an ellipse of eccentricity,

e = 0.9. For a spiral geometry, the value of
Nup

Nuc
steadily

increases with an increase in polar constant ‘m’ of the sur-
face. It is interesting to note that for both the polar and
elliptic surfaces, the heat transfer enhancement is substan-
tial with higher mass fraction of non-condensable gases
present in the free stream.

4. Conclusions

A generalized mathematical model has been developed
to determine the role of different non-circular horizontal
tube surface geometries, namely, an equiangular spiral
and an ellipse, as compared to a simple circular one, in heat
transfer enhancement capability in laminar film condensa-
tion in presence of non-condensable gases. An air–water
vapour system has been considered for demonstrating the
mathematical model. The major conclusions drawn from
the present study are as follows:

1. The liquid film thickness turns out to be lower in case of
a surface with spiral geometry, as compared to that for
an elliptic profile. The film thickness decreases with an
increase in the concentration of non-condensable species
present in the free stream.
of an equivalent circular surface, for different values of free stream mass
are represented in percentage units.
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2. An enhancement in the overall heat transfer rate, for
both elliptic and spiral surfaces, with respect to an
equivalent circular tube surface, has been observed. This
is attributed to the combined effect of gravity and sur-
face tension driven favourable pressure gradient in the
direction of condensate flow. The enhancement is more
for a spiral surface as compared to that for an elliptic
one. For an elliptic surface, there is a sharp increase in
this enhanced rate of heat transfer when eccentricity, e

increases from 0.45 to 0.9, and the similar trend takes
place for a spiral surface when the polar constant, m

changes from 1 to 2. The enhancement in heat transfer
for non-circular tubes is more prominent at higher con-
centration of non-condensable gases present in the free
stream. This suggests that tube surfaces with non-circu-
lar geometries can be utilized to a significant advantage,
for maintaining substantial rates of condensation heat
transfer even in the presence of non-condensable gases,
provided that the manufacturing difficulties do not
counterweigh this additional gain in heat transfer.
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